Sometimes one may want to create custom lag variables or create some other neighborhood level metric that may not be defined yet. This st_nb_apply()
enables you to apply a function to each observation's (xi) neighbors (xij).
Arguments
- x
A vector that will be used for neighbor xij values.
- nb
A neighbor list object as created by
st_neighbors()
.- wt
A weights list as created by
st_weights()
.- .f
A function definition. There are three default objects that can be used inside of the function definition:
.xij
: neighbor values ofx
for the ith observation. This is simply the subset of x based on the correspondingnb
list values for each element..nb
: neighbor positions..wt
: neighbor weights value.
If any of these three function arguments are omitted from
.f
, dots (...
) must be supplied.- suffix
The
map
variant to use. Options are "dbl", "int", "lgl", "chr", "list".- ...
arguments to pass to
.f
Details
The below example calculates the spatial lag using st_nb_apply()
and st_lag()
to illustrate how we can apply functions to neighbors.
Currently questioning the use case. find_xj()
is now exported and may negate the need for this function.
Examples
if (requireNamespace("dplyr", quietly = TRUE)) {
library(magrittr)
guerry %>%
dplyr::transmute(
nb = st_contiguity(geometry),
wt = st_weights(nb),
lag_apply = st_nb_apply(
crime_pers, nb, wt,
.f = function(.xij, .wt, ...) sum(.xij *.wt)
),
lag = st_lag(crime_pers, nb, wt)
)
}
#> Simple feature collection with 85 features and 4 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: 47680 ymin: 1703258 xmax: 1031401 ymax: 2677441
#> CRS: NA
#> # A tibble: 85 × 5
#> nb wt lag_apply lag geometry
#> * <nb> <list> <dbl> <dbl> <MULTIPOLYGON>
#> 1 <int [4]> <dbl [4]> 23048. 23048. (((801150 2092615, 800669 2093190, 8006…
#> 2 <int [6]> <dbl [6]> 26920. 26920. (((729326 2521619, 729320 2521230, 7292…
#> 3 <int [6]> <dbl [6]> 26196. 26195. (((710830 2137350, 711746 2136617, 7124…
#> 4 <int [4]> <dbl [4]> 14401. 14401. (((882701 1920024, 882408 1920733, 8817…
#> 5 <int [3]> <dbl [3]> 15039. 15039. (((886504 1922890, 885733 1922978, 8854…
#> 6 <int [7]> <dbl [7]> 15749 15749 (((747008 1925789, 746630 1925762, 7457…
#> 7 <int [3]> <dbl [3]> 22112. 22112. (((818893 2514767, 818614 2514515, 8179…
#> 8 <int [3]> <dbl [3]> 13672. 13672. (((509103 1747787, 508820 1747513, 5081…
#> 9 <int [5]> <dbl [5]> 22859. 22859. (((775400 2345600, 775068 2345397, 7735…
#> 10 <int [5]> <dbl [5]> 11475. 11475. (((626230 1810121, 626269 1810496, 6274…
#> # ℹ 75 more rows